Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Long term monitoring and evaluation of the excavation damaged zone induced around the wall of the shaft applying optical fiber sensor (Cooperative research)

Hata, Koji*; Niunoya, Sumio*; Uyama, Masao*; Nakaoka, Kenichi*; Fukaya, Masaaki*; Aoyagi, Kazuhei; Sakurai, Akitaka; Tanai, Kenji

JAEA-Research 2020-010, 142 Pages, 2020/11

JAEA-Research-2020-010.pdf:13.74MB
JAEA-Research-2020-010-appendix(DVD-ROM).zip:149.9MB

In the geological disposal study of high-level radioactive waste, it is suggested that the excavation damaged zone (EDZ) which is created around a tunnel by the excavation will be possible to be one of the critical path of radionuclides. Especially, the progress of cracks in and around the EDZ with time affects the safety assessment of geological disposal and it is important to understand the hydraulic change due to the progress of cracks in and around EDZ. In this collaborative research, monitoring tools made by Obayashi Corporation were installed at a total of 9 locations in the three boreholes near the depth of 370 m of East Shaft at the Horonobe Underground Research Laboratory constructed in the Neogene sedimentary rock. The monitoring tool consists of one set of "optical AE sensor" for measuring of the mechanical rock mass behavior and "optical pore water pressure sensor and optical temperature sensor" for measuring of groundwater behavior. This tool was made for the purpose of selecting and analyzing of AE signal waveforms due to rock fracture during and after excavation of the target deep shaft. As a result of analyzing various measurement data including AE signal waveforms, it is able to understand the information on short-term or long-term progress of cracks in and around EDZ during and after excavation in the deep shaft. In the future, it will be possible to carry out a study that contributes to the long-term stability evaluation of EDZ in sedimentary rocks in the deep part of the Horonobe Underground Research Laboratory by evaluation based on these analytical data.

Journal Articles

Adefining the mechanism of the gas-bubble AE characteristics by two-phase flow test

Niunoya, Sumio*; Hata, Koji*; Uyama, Masao*; Aoyagi, Kazuhei; Tanai, Kenji

Dai-47-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (Internet), p.92 - 97, 2020/01

Since underground water at the Horonobe Underground Research Laboratory site includes the dissolved gas, it is important to understand the quantitative behavior of AE signal waveform clearly and to develop the criteria of sorting technique. In this report, we tried to perform two types of laboratory tests (Small pipe test and Flat-plate test) in order to obtain detail data of AE signal wave form under two-phase flow. As the result, we could understand that there exists the relationship between the pressure breathing and AE generation, and that the diameter of pipe did not affect the AE behavior.

Journal Articles

Study on analysis methodology of AE signal wave at great depth excavation

Niunoya, Sumio*; Hata, Koji*; Uyama, Masao*; Aoyagi, Kazuhei; Wakasugi, Keiichiro

Dai-45-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.226 - 231, 2018/01

The objective of this research is to investigate the long-term hydro-mechanical behavior of rock mass around the shaft in the Horonobe Underground Research Laboratory (URL). The long-term monitoring has been carried out by optical AE sensors, optical water pressure sensors, and optical temperature sensors below 350m depth of the shaft in the Horonobe URL. From the first analytical results, it was too hard to discriminate the uncleared AE wave by using the resonant characteristic. Thus, at this time, we tried to reanalysis by using the half width of spectrum, we could discriminate it correctly as AE from the breaking of rock.

Journal Articles

Long-term evaluation of excavation damaged zone by optical measurement in Horonobe Underground Research Laboratory

Hata, Koji*; Niunoya, Sumio*; Aoyagi, Kazuhei

Dai-14-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (Internet), 6 Pages, 2017/01

The objective of this research is to investigate the long-term hydro-mechanical behavior of rock mass around the shaft in the Horonobe Underground Research Laboratory (URL). The long-term monitoring has been carried out by optical AE sensors, optical water pressure sensors, and optical temperature sensors below 350m depth of the shaft in the Horonobe URL. From the measurement results, the extent of an excavation damaged zone was 1.5m within the shaft wall. After the excavation, it was observed that the unsaturated zone of the groundwater was spread more than 1.5m within the shaft wall.

4 (Records 1-4 displayed on this page)
  • 1